Benha University Faculty of Engineering Shoubra

Sheet (10) ... Three Phase Systems

1. A three-phase, three-wire 100 volt, $A B C$ system supplies a balanced delta-connected load with impedances of $20 \angle 45^{\circ}$ ohms. Determine the line currents and draw the phasor diagram.
2. Three identical impedances of $5 \angle 30^{\circ}$ ohms are connected in wye to a three-phase, three-wire, 150 volt, CBA system. Find the line currents and draw the phasor diagram.
3. Three identical impedances of $10 \angle 30^{\circ}$ ohms in a wye connection and three identical impedances of $15 \angle 0^{\circ}$ ohms also in a wye connection are both on the same three-phase, three-wire 250 volt system. Find the total power.
4. Three identical impedances of $12 \angle 30^{\circ}$ ohms in a delta connection and three identical impedances of $5 \angle 45^{\circ}$ ohms in a wye connection are on the same three-phase, three wire, 208 volt, $A B C$ system. Find the line currents and the total power.
5. A three-phase, three-wire, 240 volt, CBA system supplies a delta-connected load in which $\mathrm{Zab}=25 \angle 90^{\circ}, \mathrm{ZBC}=15 \angle 30^{\circ}$ and ZCA $=20 \angle 0^{\circ}$ ohms. Find the line currents and the total power.
6. A three-phase, four-wire, 208 volt, $A B C$ system supplies a wyeconnected load in which $Z A=10 \angle 0^{\circ}, Z B=15 \angle 30^{\circ}$ and $\mathrm{Zc}=10 \angle-30^{\circ}$ ohms. Find the line currents, the neutral current and the total power.
7. The load impedances of Problem 6 are connected to a threephase, three-wire, 208 volt, $A B C$ system. Find the line currents and the voltages across the load impedances.

Best Wishes;

